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Trapping of water waves above a round sill 
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The three-dimensional problem of wave trapping above a submerged round sill was 
first analysed by Longuet-Higgins on the basis of a linear shallow-water theory. 
The large responses predicted by the theory were, however, not well borne out by 
the experiments of Barnard, Pritchard & Provis, and this has motivated a more 
detailed study of the problem. A full linear theory for both inviscid and weakly 
viscous fluid, without any shallow-water assumptions, is presented here. It reveals 
important limitations on the use of shallow-water theory and the reasons for them. 
In particular, while the qualitative features of wave trapping are similar to those of 
shallow-water theory, the nearly resonant frequencies differ significantly, and, since 
the resonances are narrow, the observed amplitudes at  a given frequency differ 
greatly. The geometry is strongly indicative of long waves, and the dispersion relation 
appears quite consistent with that, but the part of the motion at  wavenumbers that 
are not small has, despite the small amplitude, a substantial effect on the response 
to excitation. 

1. Introduction 
A theoretical study of the trapping that results when a train of small-amplitude 

plane waves of a fixed frequency is incident on a submerged steep-sided round sill 
(figure 1) was made by Longuet-Higgins (hereinafter referred to as LH) in 1967. His 
investigation was motivated by wave records taken at Macquarie Island showing the 
occurrence of regular oscillations of unusually large amplitudes. In view of these 
observations, LH considered a simplified geometry in which the island shelf was 
represented by a round sill, with a circumference of 80 km, submerged to a depth 
of 100 m. He based his calculation on linear inviscid shallow-water theory, and used 
separation of variables in cylindrical coordinates to determine the expressions for 
the surface displacements for each of the two regions of constant depths. Because 
of the depth independence of the velocity field in shallow-water theory, the velocity 
components could not be made continuous at  the sill edge, and two approximate 
matching conditions were used : the continuity of surface elevation and the continuity 
of the horizontal component of the mass flux. LH’s analysis showed the existence 
of eigenfrequencies with very small imaginary parts. A train of plane waves with a 
frequency near such an eigenfrequency could theoretically excite ‘ nearly trapped ’ 
modes over the sill, and the response at  such modes was determined. The largest 
responses were found to occur at  the higher angular modes and at smaller ratios of 
the depths. These calculations have been confirmed and extended by Summerfield 
(1969), who applied shallow-water theory to a ‘shelf-island’ model consisting of a 
steep-sided round island rising from the top of a round sill of larger radius. He showed 
the eigenfrequencies for his system to be closely related to those of LH’s sill geometry. 
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FIGURE 1 

However, laboratory observations by Pite (1977) and by Barnard, Pritchard & Provis 
(1983, henceforth denoted by BPP) did not reveal the large responses predicted by 
the shallow-water model. The purpose of this paper is to examine a complete linear 
theory in an endeavour to explain these discrepancies. 

In $2 the equations governing the full linear inviscid theory are presented. In $3 
the velocity potential is calculated. This is achieved by representing it separately in 
the regions above the sill and outside the sill ; the solutions in the two zones are then 
made to satisfy the necessary conditions of analytic continuation at the sill edge. This 
leads to an infinite set of linear equations, for which a collocation method of solution 
is described. In addition, an iterative method is presented as a check on the extensive 
calculations. No attempt has been made to account for separation effects at the sill 
edge. These effects could lead to additional damping. 

In $4, the theory is applied to laboratory conditions relating to the experiments 
of BPP. The results show that the modes that decay away from the sill edge and 
are not included in shallow-water theory make appreciable contributions to the 
wave amplitudes above the sill. To obtain a comparison on oceanographic scales 
between the full theory and the shallow-water theory, the theoretical predictions for 
the special case of Longuet-Higgin's sill geometry are examined in $5.  The differences 
are particularly striking near the frequencies where the full theory predicts large 
amplitudes, and the reasons for these differences are discussed. A theory allowing for 
weakly viscous effects is given in $6. Numerical computations were carried out at a 
frequency pertaining to the conditions considered by BPP. At that frequency, viscous 
effects were found to  have negligible influence on the amplitudes. For the entire range 
of frequencies investigated by BPP, moreover, viscous effects are estimated to make 
less than 1 %  difference in the amplitudes, even a t  the frequencies where peak 
amplitudes are predicted. On oceanographic scales, however, where an eddy viscosity 
may be more appropriate than the kinematic viscosity, damping may be more 
pronounced. 
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2. General equations 
The motion is assumed inviscid, simple-harmonic in time, and of sufficiently small 

amplitude for the use of linear theory. It is referred to cylindrical coordinates ( r ,  8, z )  
with the origin at the undisturbed water surface (see figure l ) ,  r measured outward 
in units of the sill radius a ,  and z measured vertically upward in units of the 
undisturbed water depth d above the sill; the depth outside the sill is denoted by 
D = d/6.  Let x denote the horizontal coordinate in the direction 8 = 0. A train of plane 
waves of frequency u and amplitude (p*II is incident on the sill from the positive 
x-axis. The surface displacement, measured in units of d,  is denoted by p ,  and the 
velocity potential $( r ,e ,z , t )  is measured in units of d2u and satisfies Laplace's 
equation, namely 

together with the following boundary conditions: at  the free surface z = 0 

Tt  = V $ Z ?  

( 2 . 2 ~ )  

on the horizontal portion of the seabed, z = - 1 and 0 < r < 1 ,  and z = - 116, r > 1 

4" = 0, (2.2b) 

9 &+a$" = 0 ( r  2 0, 0 < 8 < 2n), 

and on the vertical wall of the sill at  r = 1 ,  - 1/6 < z < 1 

$r = 0. ( 2 . 2 4  

At large distances from the sill, the wave-field is assumed to consist of the incident 
wave, whose surface elevation is the real part of 

T~ = Ip(Ie-iWs+aO 

together with waves that either decay or radiate outwards. Here K is the positive 
real root of the dispersion relation 

KD K D  Du2 
-tanh---=-. 

a a 9 

Different representations of the solution will be used in the domain above the sill, 
r < 1 ,  and in that outside the sill, r > 1 .  These functions must be analytic continuations 
of each other, for which a necessary and sufficient condition is the continuity of q5 
and a$/&. 

3. Form of solutions 
Let the velocity potentials for r < 1 and r > 1 be denoted by $s and q50 respectively, 

and be simple harmonic in time with radian frequency u. Make the decomposition 
$, = $I + $R, where $I represents the incident plane wavetrain and $R represents 
waves generated by the sill. $I is calculated by separation of variables in Cartesian 
coordinates : 
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Here, and throughout the paper, the notation + * will be used to denote the addition 
of the complex conjugate of all preceding terms. The free-surface boundary conditions 
require A, to be the real and positive root of the dispersion relation (see e.g. Davis 
& Hood 1976) 

D 8  
h tanhh = -. (3.2) 

9 

For convenience, the expression for $I is converted to cylindrical coordinates (ErdBlyi 
et al. 1953, 57.2.4) : 

coshh,(Sz+ 1)  x t m i - m J m ( T )  ah, r cosmO+*, 
$ 1 -  - I F i u t  2h, sinhh, ,-, (3.3) 

where e0 = 1 and ern = 2 
linearized problem, lrlI is normalized to unity. 

sum (Havelock 1929) 

(m + 0). For the purpose of computations for the 

The generated field in the region outside the sill, r > 1, may be represented as the 

a, 

$ R -  - edUt cos m8 { BmoHg) ( - a;r) coshh,(Sz+ 1)  
m=O 

}+*. (3.4) 
ah r cosh,(Sz+l) 

+ n-1 BmnKm(+) Krn(aAnlD) 

Here elements of { f ih, : m = 1 ,2 , .  . .} are the purely imaginary roots of the dispersion 
relation (3.2). Note that the modal expansion is complete (Davis & Hood 1976) and 
that A, = mn for m sufficiently large or for Dcr2/g sufficiently small. The notations 
for the Bessel functions are those of Abramowitz & Stegun (1972). Each term in (3.4) 
satisfies the appropriate conditions at infinity as well as the free-surface conditions 
and boundary conditions on the seabed. The coefficients Bm, and Bmn (n =I= 0) ,  as yet 
undetermined, are respectively coefficients of each radiating mode and each non- 
radiating mode, which is confined near the sill edge. From now on, the subscript on 
A, and the superscript on the Hankel function will be dropped. 

The solution in the sill region, r < 1, may be represented as the sum of solutions 
obtained by separation of variables, namely 

00 

$s = e-iUt cosm8 { A,,J, ($) cosh k ( z +  1)  
m-0 

Here elements of {ko ,  ik, : n = 1 , 2 . .  .} are the roots of 

d r 2  

9 
k tanh k = -, (3.5a) 

of which each of the k, are positive. Each term satisfies the appropriate conditions 
a t  the edge of the sill, a t  the free surface and on the seabed. The, as yet undetermined, 
coefficients A,, and A,, (n + 0) are respectively coefficients of each wavelike mode 
and each spatially decaying mode. I n  what follows, the subscript on k,  will be 
dropped. 

The continuity of &$jar at r = 1 ,  - 1 < z < 0, 0 < 8 < 2~ yields one of the 
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two conditions at  the sill edge 
109 

By virtue of the orthogonality property of the set 

this condition yields, for m = 0,1, ..., 

Here 4, denotes the coefficient of cos me e+” in q5s, and F;F, and h(h) are defined 
in the appendix. For n = 1,2, ..., 

A t  the edge of the sill ( r  = 1, z = - 1, 0 < 0 < 2 ~ ) ,  there is a singularity in d4ldr. 
However, since it behaves locally like d, the integrations in (3.7a, b)  are possible. 

The second condition at  r = 1, - 1 < z < 0, 0 < 0 < 2n: is the continuity of 4. 
This yields a second relation between B,, and A,,, from which the B,, are 
eliminated by means of (3.7a, b).  The resulting equations for the A,, are 

A,o{coshk(z+l)J, m 

Amp{coskP(z+1)-Zmp(z)} 

= ( F , - F & H m ( a h ~ D ) } c o s h h ( & z + l )  (-1 < z < O ,  m = O , l ,  ...). (3.8) 
H:, (aA/D) 

The notation is defined in the appendix. When no spatially decaying modes are 
included (3.8) is first multiplied by coshk(z+ 1) and then integrated over z. With the 
inclusion of the decaying modes, a collocation method is used to solve the resulting 
infinite number of equations: that is, an N x N matrix equation is constructed by 
the application of (3.8) a t  N values of z in the range - 1 < z < 0 and by neglecting 
the higher-order decaying modes {Amp: p 2 N>. The function involved in this 
collocation scheme is 4, which behaves like 1-d’ a t  the sill edge. Thus, although the radial 
velocity is infinite at the edge, this scheme converges. 

Justification for the matrix truncation, which is performed in the calculations of 
the following sections, is as follows. For the investigation on the laboratory scales de- 
scribed in $4, the N values of z were chosen to be { z :  z = - - i / (N+ l),i  = 1, ...,N) 
for N = 2,6,11,16,21,41. It is shown in $4 that the differences in the resulting 
amplitudes for N 3 6 was of negligible importance. Hence it is apparent that the 
above choice for the values of z, with N = 6, was adequate for computations involving 
similar sill geometries. The computations in $ 5  concern scales for which the parameter 
a /d  was much greater than in $4, so that the local modes decayed faster away from 
the sill edge than those of $4. Since experimental results by Pite (1977) and, 
independently, by BPP indicated almost no presence of exponential decay in the wave 
field near the sill edge, it is expected that the faster the local modes decay, the less 
will be their response. Therefore N = 6, which was sufficiently accurate for $4, was 
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also expected to  give suitable accuracy for $5, and has also been used for the 
computations described in $5. 

The computations are made difficult by the presence, in (3.8), of the infinite series 
in the terms Zmp(z) for p = 0,1,  . . . , m = 0, 1 ,  . . . , which are slowly convergent. Because 
of this, a numerical check on the complicated computations was required, and an 
iterative method is now presented for this purpose. 

The decomposition of $s in the radial variable yields (as shown by (3.5)) a principal 
part J,(akr/d), which is wavelike, and an infinite number of modes I,(ak,r/d) that  
decay away from the sill edge. If the value of the principal radial eigenfunction at 
the sill edge is not too small, then an iterative procedure may be adopted. From now 
on, the coefficient of cos m0 e-iut in $s and #o  will be denoted by 4,. 

A preliminary outer flow is determined from the radiation condition and the 
boundary condition a$,/ar = 0 a t  r = 1 ,  - 1 < z < 0. This outer flow then determines 
the boundary condition a t  r = 1 ,  - 1 < z < 0, for a sill flow, through the continuity 
of q5. This sill flow then yields a$,/& a t  r = 1, - 1 < z < 0,  from which a second outer 
flow is calculated, and so forth. 

Equations (A 1 )  and (A 2 )  in the appendix arise from this scheme and are to be 
used as follows. When the A,, in q5s are known, the coefficients B,, of q50 are 
calculated from (A 1 ) .  Note that here Hk(aA/D) ,  I,(ak,/d) and Kk(aA,/D) do not 
vanish. When the B,, are known, the coefficients in $s are calculated from (A 2). 
This iteration diverges near the zeros of J,(ak/d) ,  which lie near the peak periods. 
This scheme therefore fails for the parameters of most interest, but it was felt 
important to use the method to  provide a check on the computations made with (3.8). 

4. Application to laboratory scales 
This section concerns some calculations made to  correspond to the laboratory scales 

used by BPP. For their experiments, a = 50 em, d = 1.75 em, D = 15.4 cm, and the 
forcing periods ranged between 0.75 and 1.20 s. 

The full linear theory with no spatially decaying modes was used to  compute the 
response curve for each modelnum5er and were compared with the linear shallow-water 
theory. Figures 2 (a ,  b )  display the results for the 0th mode and figure 3 those of the 
6th mode. The curves show that the peaks in the lower frequency range occurred near 
those of linear shallow-water theory. At small modal numbers, however, the response 
was significantly diminished, and at large modal numbers the bandwidths were small 
so that Longuet-Higgins’ theory was not useful in calculations of the amplitudes. I n  
the higher frequency range, there was no evidence of the peaked response predicted 
by the LH theory. I n  this connection, note that there are a large number of zeros 
in the radial eigenfunction J,(akr/d) in the sill region. Thus the horizontal scale of 
the motion is so much smaller than the radius that the motion is not a long wave, 
and this is the most probable source of the substantial error in that theory. 

Computations, accounting also for the decaying modes, were carried out at the 
forcing period of 1.181 s where the measurements by BPP yielded the largest 
amplitude above the sill. The difference between the empirical values 
( lTE(ri, 0,)l: ri = + +(i - 1 ), i = 1, . . . ,7,0,  = &u - 1 ), j = 1 ,  . . . , 19) and the theoretical 
values ( 1 ~ ~ 1 )  of the wave amplitudes was measured by 

7 19 
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FIQURE 2. (a) Linear-theory response with no ‘decaying’ modes, for the BPP sill; modenumber 0. 
(b) Linear shallow-water response, IC,J versus period, for the BPP sill; modenumber 0. 

maxi IrE(ri, ql- I rd r i ,  0j)I I 

maxIrJdrt, 0j)l 
Em = i , i  (4.2) 

f ,  i 

The coefficients wij and wij represent the weights determined by Simpson’s rule for 
integration over 0 (0 < 0 < IT) and r (rl < r < r , ) ,  together with additional terms 
from the integration over 0 < r < rl and r7 < r < 1. For example, the square of the 
numerator of E2 is 

z?i(s(rl) r l  + s ( r7)  r 7  + 4 ( s ( r Z )  r 2  +#@4) r4 + S ( r 6 )  r 6 )  + 2 ( s ( r 3 )  r 3  + s ( r 5 )  r 5 ) )  

+$dS(rl) r1+8(r7) ‘719 (4.3) 
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 FIGURE^.---^ ---,linearshallow-waterresponse, ICJ versusperiod, for theBPPsil1; modenumber 
6. ---0---, linear response, IC,( versus period with no decaying modes, for the BPP sill. 

where, for i = 1, ..., 7, 

+ 2  c ( l?E(Ti ,  - hT(ri’  @j)1)’ 
j-2n+l, 72-1, ..., 8 

+ ( l?E(ri ,  @,)I -lTT(ri? + (l?’E(rl, @19)1 - l?T(ri, e19)l)2}- (4.4) 

A consistency check on E,  was made by using the wij and w; according to the 
midpoint rule. 

When only the travelling modes Amo (m = 0,. . . ,8) were included in the computa- 
tions, the improvement in E, over the LH theory was from 55 % to 47 %. When the 
first decaying mode A,, (m = 0,. . . ,8) was included, together with a large number of 
‘outer’ decaying modes, E, was further improved from 47 Yo to 35 %. With the 
inclusion of from 5 to 40 ‘sill’ decaying modes, E, decreased by negligible amounts. 
These results document the importance of the decaying modes, which had previously 
been thought negligible (Pite 1977). 

The above computational results are explained as follows. The experimental 
conditions may be modelled by the full equation (3.8) when 6 and Dr2/g  are both 
small. Under these conditions, the response equation becomes approximately 

Xis 0(1/S2) and originates from the ‘outer’ decaying modes, of which a large number 
must be included in the computations. Y is 0(1) and originates from the ‘sill’ 
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FIGURE 4. Max{v} as a function of T(g/D):. ---, full linear theory; 
-, LH shallow-water theory. 

decaying modes. Equation (4.5) indicates that the inclusion of the ‘outer’ decaying 
modes is crucial to the satisfaction of the sill-edge conditions, but that  the inclusion 
of the ‘sill’ decaying modes is not. This accounts for the differences in E2 described 
in the last paragraph. 

The maximum amplitudes above the sill and the amount of mechanical energy over 
the sill were computed using the full linear theory with 5 ‘sill’ decaying modes. The 
results, for the experimental range of forcing frequencies, are shown in figures 4 and 
5 together with those of the LH theory. Compared with the peaks given by the LH 
theory for this range of frequencies, those of the full linear theory were shifted 
significantly to higher periods, with increased magnitude in the case of the ‘energy’ 
graph. The peaks of the full linear theory occur near the complex zeros of the 
coefficient of A,, in (4.5). The LH theory peaks near the zeros k of 

where k2 = dcr2/g = &A2. This indicates that the shifts arise through the term X +  Y ,  
which is O(l/S2) €or small S. The LH theory is therefore useful here only when 
k/S2 4 1. If a k / d  is too small, however, there is no resonance in the system. This 
indicates that the linear shallow-water theory is useful if Da2/g and k /Sz  are both 
small and a k l d  is not small. 

It appears therefore that a shallow-water theory is not necessarily a good 
approximation to the full linear theory even though the boundary conditions seem 
to indicate it. The reason lies in the extreme sensitivity of the matrix equation arising 
from (3.8) (and hence the response) to what might be presumed to be small 
perturbations. For example, the terms arising from the decaying modes might a t  first 
guess be thought to be unimportant ; indeed, their relative excitations Am,/A,, for 
p = 1 , 2 ,  . . . , m = 0, 1,  . . . can be shown to be small. Also, the wavenumbers k and A,  when 
evaluated by the full linear dispersion relations, differed only slightly from their 
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FIQURE 5 .  A graph of as a function of T(g/D) i :  ---, full linear theory; 
-, LH shallow-water theory. 

shallow-water values. Their small differences, however, caused noticeable effects on 
(3.8) through the Bessel functions, especially at forcing frequencies at  which the 
resulting matrix equation was nearly singular, and these are just the frequencies of 
peak response. The standard, diagnostic checks on dispersion relation and modal 
amplitudes do turn out to mislead. 

An implication of this result is that shallow-water theory should be used only with 
great care in interpreting experimental results concerning motions that in theory 
exhibit sharp changes in the response for small changes in the forcing. Another is that 
great care may need to be taken with the numerical work at  such frequencies. 

5. Application to oceanographic scales 
Longuet-Higgins (1967) calculated the response IAnl, where 

W 
q = eifn8-utf A,  J,(ak,r), k - ~ 

- W  - (gd)i' 

for a selection of frequencies. The corresponding response using the full linear theory 
is ~Cmo~/em, where 

idv2 
C,, = Am,&) coshk (m = O , i ,  ...), 

idv2 
C,, = Am,(--) cosk, (m = 0,1, ..., n = 1 , 2  ,... ). 
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Dimensionless frequency Full linear theory’s 
au Longuet-Higgins’ coefficient of 

Mode no. m MnI travelling mode 

2 4.921 
8.219 

4 7.447 
10.798 
14.027 

6 9.821 
13.408 
16.723 
19.922 
23.235 

8 12.121 
15.890 
19.352 
22.662 
25.869 
29.083 
32.480 

8 

5 

6 
7 

4.796 
5.632 
6.799 
8.021 
9.240 

12.832 
1 1.630 
15.025 

& = L  
10 

16.23 

91.37 
18.90 

8.057 

8.593 
581.1 
85.81 
24.21 
10.42 
7.122 

3895 
437.8 
98.12 
31.76 
13.55 
7.954 
6.512 

S = t  
2.871 
3.269 
3.546 

4.447 
5.841 
3.738 

3.018 
10.83 

S = &  
6.8903 0.978 
8.124 1.158 

9.308 1.296 

11.88 
7.267 
2.145 
5.756 
6.233 

0.2798 
1.176 
2.840 
4.331 
4.196 
0.0757 
0.2235 
0.7472 
1.714 
2.797 
3.269 
2.769 

2.775 
2.921 
3.526 
4.482 
5.644 
2.516 

5.351 
3.026 

1.357 
1.447 
1.531 

TABLE 1. Comparison of full linear theory with Longuet-Higgins’ (1967) 
response IAn( in the surface elevation 

The results for the frequencies and depth ratios S considered by LH are listed in table 
1. For S = & there were not very large differences between the predictions of the two 
theories. At  S = &, however, the LH theory predicted very large responses, especially 
at larger values of M. The matrix equation was then sensitive to approximations 
inherent in shallow-water theory, mentioned toward the end of $4, and the two 
theories produced very different results. 

It is of interest to delineate the parameter ranges for which the shallow-water 
theory may be useful. This theory is based on the smallness of the parameter Da2/g 
and the practical range for which the theory appears to be useful is limited to values 
of this parameter rather less than 0.1 (Silvester 1974, table 4.1). On the other hand, 
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the dimensionless frequencies au/(gd)i  at which resonance occurs lie close to the zeros 
of J m ( z ) ;  the smallest zeros of J,(z) increase as m increases, and for m greater than 
6 the first zeros are greater than 10. Since the shallow-water parameter is related to 
aa/(gd)t by Dcr2/g = (acr/(gd)+), (d/a)2/S, the LH theory is likely to be useful for an 
appropriate combination of (i) d / a  small, (ii) S not too small, and (iii) m not too large. 
The large, narrow, ‘resonant’ peaks predicted by the LH theory, however, occurred 
for parameter ranges not satisfying these restrictions. For instance, table 1 
( d / a  z 0.008) shows that the most spectacular peaks occurred for larger m and smaller 
6 and that these peaks were not predicted by the more accurate linear theory. 

6. Weakly viscous effects 
Consider a periodic flow above the sill a t  a frequency cr. At the solid boundary there 

will be a Stokes boundary layer of thickness (u/cr) i ,  where v is the kinematic viscosity 
of the fluid. For laboratory scales, u is assumed to be 0.01 emz s-l (for water) and for 
the field scales, v may be the eddy viscosity, perhaps of the order of 10 em2 s-l. In 
the sill geometry of BPP, (v/cr)i /d = 0.05, and, for the case considered by LH, this 
parameter was an order of magnitude smaller. The effect of viscous dissipation at the 
bottom boundary outside the sill region is expected to be small compared with that 
inside. In order to estimate the effect of viscosity on the total flow, it is therefore 
plausible to take the boundary layer into account for r < 1, and to neglect it for r > 1. 
Following the work of Mahony and Pritchard (1980) the boundary condition to be 
posed at z = -1, r < 1,0 < 6 < 27t is found to be 

where s1 = ( v / a ) j / d  and 6, = (d/a),.  
Computations for the sill geometry studied by BPP showed approximately a 1 yo 

difference in E, (as defined by 4.1)) from the inviscid case, over the entire frequency 
range. Thus it would appear that the effect of viscosity is not important under their 
conditions. The suggestion by Pite (1977), who used a quasi-empirical theory that 
involves a fluctuating body force, that viscous effects were significant on his 
laboratory scales, does not appear to be justifiable since his values of el and s2 were 
similar to bhose of BPP. 

The author is indebted to Professor J. J. Mahony (University of Western Australia) 
for suggesting this topic and for many helpful discussions. Thanks are also due to 
Dr W. G. Pritchard (University of Essex) for suggestions involving $4 and for help 
indrafting this paper, and to Professor R. E. Meyer (University of Wisconsin-Madison) 
for advice on the presentation. 
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f ( k )  = I' cosh2 k(z+ l ) d z ,  
-1  

E ,  iCm J ,  (%) E , i  J & ( g )  
, F E =  

2h sinhh 2h sinh h ' Fm = 

rn ro 
g(h, k) = J cosh h(z+ 1) cosh k(z+ 1) dz, h(h) = cosh2 

-1 J -l,s [".: + 

(p = 1 , 2 ,  ...). (A l b )  
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wheref(k), F, and g(h, k) are defined above; 
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